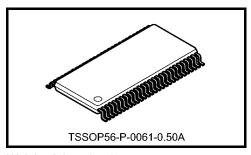
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

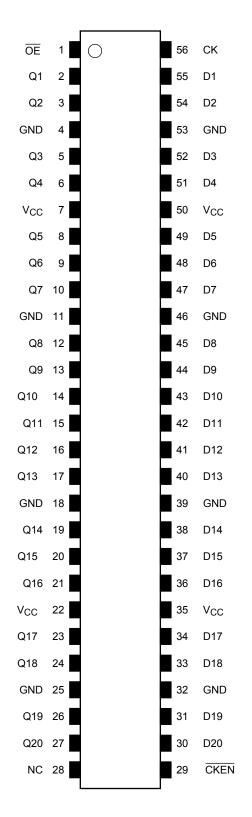

TC74VCX162721FT

Low-Voltage 20-Bit D-Type Flip-Flop with 3.6-V Tolerant Inputs and Outputs

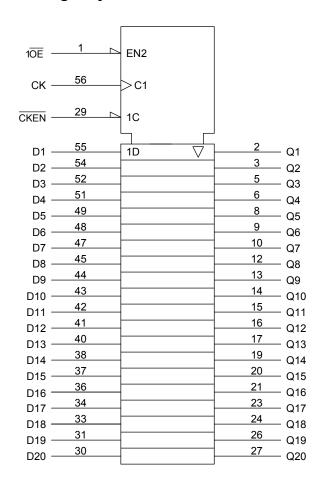
The TC74VCX162721FT is a high-performance CMOS 20-bit D-type flip-flop. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V\!.$

The TC74VCX162721FT is an edge-triggered D-type flip-flop with qualified clock storage. On the positive transition of the clock (CK) input, the device provides true data at the Q outputs if the clock-enable ($\overline{\rm CKEN}$) input is low. If $\overline{\rm CKEN}$ is high, no data is stored. When the $\overline{\rm OE}$ input is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.


Weight: 0.25 g (typ.)

The $26-\Omega$ series resistor helps reducing output overshoot and undershoot without external resistor. All inputs are equipped with protection circuits against static discharge.

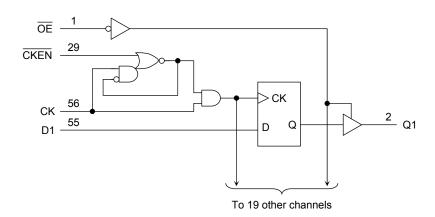

Features

- $26-\Omega$ series resistors on outputs
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation : $t_{pd} = 4.4 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V})$
 - $t_{pd} = 5.8 \text{ ns (max) (V}_{CC} = 2.3 \text{ to } 2.7 \text{ V}$
 - $: t_{pd} = 9.8 \text{ ns (max) (VCC} = 1.8 \text{ V)}$
- Output current: $I_{OH}/I_{OL} = \pm 12 \text{ mA (min) (V}_{CC} = 3.0 \text{ V)}$
 - $: I_{OH}/I_{OL} = \pm 8 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$
 - $: I_{OH}/I_{OL} = \pm 4 \text{ mA (min) (V}_{CC} = 1.8 \text{ V)}$
- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$
 - Human body model $\geq \pm 2000 \text{ V}$
- Package: TSSOP
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol

Truth Table (each flip-flop)


	Outputs			
ŌĒ	CKEN	CK	D	Q
L	Н	Х	Х	Qn
L	L		Н	Н
L	L		_	L
L	L	L or H	X	Qn
Н	Х	Х	Х	Z

X: Don't care

Z: High impedance

Qn: No change

System Diagram

3

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V_{OUT}	–0.5 to V _{CC} + 0.5	V
		(Note 3)	
Input diode current	I_{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	P_{D}	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
Tower supply voltage	VCC	1.2 to 3.6 (Note 2)		
Input voltage	V _{IN}	-0.3 to 3.6	V	
Output voltage	Vour	0 to 3.6 (Note 3)	V	
Output voltage	V _{OUT}	0 to V _{CC} (Note 4)	V	
		±12 (Note 5)		
Output current	I _{OH} /I _{OL}	±8 (Note 6)	mA	
		±4 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 7: $V_{CC} = 1.8 \text{ V}$

Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85° C, 2.7 V < $V_{CC} \le 3.6$ V)

Characteris	Characteristics		Test Condition		V _{CC} (V)	Min	Max	Unit
Innut voltage	H-level	V _{IH}	-	_	2.7 to 3.6	2.0	_	V
Input voltage	L-level	V _{IL}	-	_	2.7 to 3.6	_	0.8	V
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -6 mA	2.7	2.2		
				$I_{OH} = -8 \text{ mA}$	3.0	2.4		
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2		V
		V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	2.7 to 3.6	_	0.2	
l level	L-level			$I_{OL} = 6 \text{ mA}$	2.7	_	0.4	
	L-level			$I_{OL} = 8 \text{ mA}$	3.0	_	0.55	
				I _{OL} = 12 mA	3.0	_	0.8	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μΑ
3-state output OFF state current		I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		2.7 to 3.6	_	±10.0	μА
Power-off leakage of	Power-off leakage current I _{OFF} V _{IN} , V _{OUT} = 0 to 3.6 V			0	_	10.0	μΑ	
Quicecent augely a			V _{IN} = V _{CC} or GND		2.7 to 3.6	_	20.0	
Quiescent supply cu	ui eiil	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.7 to 3.6	_	±20.0	μΑ
Increase in I _{CC} per	input	Δlcc	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750	

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characte	ristics	Symbol	Symbol Test Condition		V _{CC} (V)	Min	Max	Unit	
	H-level	V _{IH}		_	2.3 to 2.7	1.6	_		
Input voltage	L-level	V _{IL}		_	2.3 to 2.7	_	0.7	V	
				I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_		
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -4 mA	2.3	2.0	_		
				I _{OH} = -6 mA	2.3	1.8	_	٧	
Output voltage				I _{OH} = -8 mA	2.3	1.7	_		
				I _{OL} = 100 μA	2.3 to 2.7	_	0.2		
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$V_{IN} = V_{IH} \ or \ V_{IL}$	I _{OL} = 6 mA	2.3	_	0.4	
				I _{OL} = 8 mA	2.3	_	0.6		
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μА	
3-state output OFF state current		la-	$V_{IN} = V_{IH}$ or V_{IL}		2.3 to 2.7		±10.0		
		loz	$V_{OUT} = 0$ to 3.6 V		2.3 10 2.7	_	±10.0	μΑ	
Power-off leakage	current	loff	V _{IN} , V _{OUT} = 0 to 3.6 V		0		10.0	μА	
Outroped supply supply			$V_{IN} = V_{CC}$ or GND		2.3 to 2.7		20.0	μА	
Quiescent supply	Current	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le$	3.6 V	2.3 to 2.7	_	±20.0	μΑ	

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristics		Symbol	Test Co	ondition		Min	Max	Unit
Ondraotene	Characteristics		1001 00	rest donation		141111	Wax	Offic
Input voltage	H-level	V _{IH}	_	_	1.8 to 2.3	$\begin{array}{c} 0.7 \times \\ V_{CC} \end{array}$		V
input voltage	L-level	V _{IL}	_	_	1.8 to 2.3	_	0.2 × V _{CC}	V
	H-level	Voh	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage				I _{OH} = -4 mA	1.8	1.4	_	V
	L-level	\/-·	V _{IN} = V _{IH} or V _{II}	I _{OL} = 100 μA	1.8		0.2	
	L-IEVEI	V _{OL}	VIN = VIH OI VIL	I _{OL} = 4 mA	1.8		0.3	
Input leakage currer	nt	I _{IN}	$V_{IN} = 0 \text{ to } 3.6 \text{ V}$		1.8		±5.0	μΑ
3-state output OFF	-state output OFF state current I_{OZ} $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$			1.8	_	±10.0	μА	
Power-off leakage c	urrent	I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА
Out-out-out-out-out-out-out-out-out-out-o			V _{IN} = V _{CC} or GND		1.8		20.0	μА
Quiescent supply cu	iii c iii	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		1.8		±20.0	μΑ

6

AC Characteristics (Ta = –40 to 85°C, input: $t_r = t_f$ = 2.0 ns, C_L = 30 pF, R_L = 500 Ω) (Note 1)

Characteristics	Symbol	Test Condition	Min		Max	Unit
Ondidotonotion	Cymbol	rest condition	V _{CC} (V)	141111	IVIAX	o iii
			1.8	100	_	
Maximum clock frequency	f _{max}	Figure 1, Figure 2	2.5 ± 0.2	200	_	MHz
			3.3 ± 0.3	250		
Dranagation delay time	4		1.8	1.5	9.8	
Propagation delay time (CK-Q)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	0.8	5.8	ns
(CN-Q)	t _{pHL}		3.3 ± 0.3	0.6	4.4	
			1.8	1.5	9.8	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	2.5 ± 0.2	0.8	5.9	ns
	t _{pZH}		3.3 ± 0.3	0.6	4.3	
		Figure 1, Figure 3	1.8	1.5	8.8	ns
3-state output disable time	t _{pLZ}		2.5 ± 0.2	0.8	4.9	
	t _{pHZ}		3.3 ± 0.3	0.6	4.3	
Minimum mula a middle		fW (H) Figure 1, Figure 2	1.8	4.0	_	
Minimum pulse width			2.5 ± 0.2	1.5	_	ns
(CK)	tW (L)		3.3 ± 0.3	1.5	_	
NA de la companya del companya de la companya del companya de la c			1.8	2.5	_	
Minimum setup time (D, CKEN)	ts	Figure 1, Figure 2, Figure 4	2.5 ± 0.2	1.5	_	ns
(D, CKEN)			3.3 ± 0.3	1.5	_	
Marian and Land Con-			1.8	1.0	_	
Minimum hold time $ (D, \ \overline{CKEN} \) $	t _h	Figure 1, Figure 2, Figure 4	2.5 ± 0.2	1.0	_	ns
			3.3 ± 0.3	1.0	_	
			1.8	_	0.5	
Output to output skew	tosLH	(Note 2)	2.5 ± 0.2	_	0.5	ns
	t _{osHL}		3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50 \ pF$, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

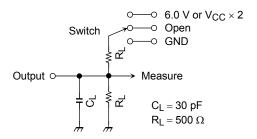
Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.0 \text{ ns}, C_L = 30 \text{ pF}, R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 1.8	0.15	
Quiet output maximum dynamic V _{OI}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 2.5	0.25	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 3.3	0.35	
	V _{OLV}	$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 1.8	-0.15	٧
Quiet output minimum dynamic V _{OI}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 2.5	-0.25	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 3.3	-0.35	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 1.8	1.55	
Quiet output minimum dynamic V _{OH}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 2.5	2.05	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No	e) 3.3	2.65	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	act Condition		Тур.	Unit
Cildiacteristics	Symbol	rest condition		V _{CC} (V)		
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	6	pF
Output capacitance	CO	_		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (N	Note)	1.8, 2.5, 3.3	60	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/20 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

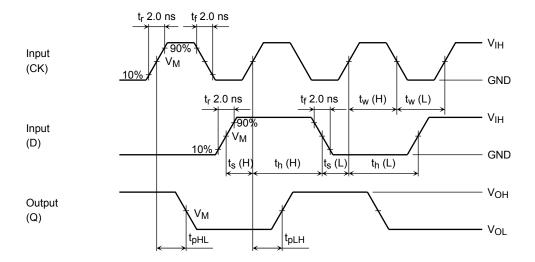


Figure 2 t_{pLH} , t_{pHL} , t_{w} , t_{s} , t_{h}

9

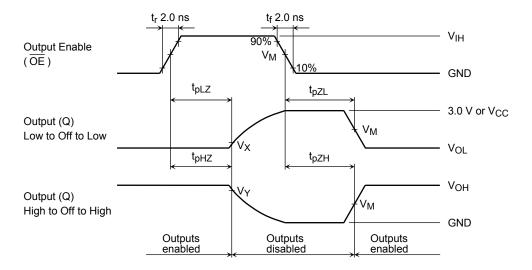


Figure 3 t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}

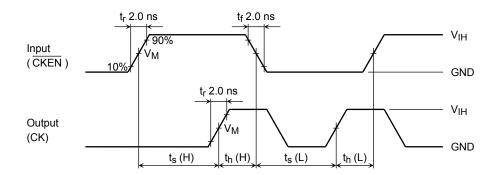
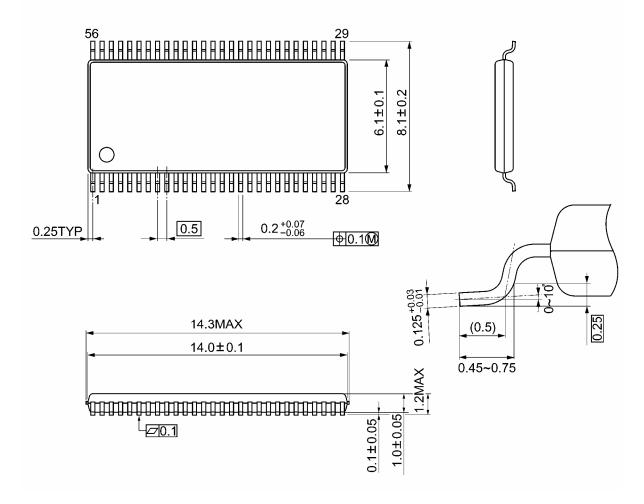



Figure 4 t_s, t_h

Symbol		V _{CC}	
Syllibol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V
V _{IH}	2.7 V	V _{CC}	V _{CC}
V _M	1.5 V	V _{CC} /2	V _{CC} /2
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V

Package Dimensions

TSSOP56-P-0061-0.50A Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.